

Objectives

To explore the impact of muscle parameters on thumb-tip force production. Ι. To identify the need to account for long-term temporal dependencies when mapping muscle parameters to the forces they produce.

Methods

Dataset Generation	Model Parameters	Target Force (35 N palmar,
• Model: Wrist and Thumb ¹	Vary max iso. force of muscles	10 N ulnar)
• Doromotor altored. Maximum Icometric Force	assoc. with Datasets 1-4.	& larget Posture

Shaded regions represent 95% CI

- 2. Accounting for long-term temporal dependencies did not significantly **improve ANN performance**
- All models performed substantially better than random guess (represented by the dashed horizontal line)
- Two-sample t-tests showed significant differences between accuracies, but neither model consistently outperformed the other

FPL, APL, ADPt

their anatomical location (right).⁶

- Simple

Error bars represent 95% CI, * and ** denote significance p<0.05 and p<0.01, respectively

1. ANNs may be used to predict difficult-to-measure muscle parameters <u>but</u> performance with deeper and wider networks should be investigated. 2. Accounting for temporal dependencies is unnecessary for classifying muscle

- Classify or regress additional muscle parameters, such as pennation angle.
- Expand to more complex motor tasks and biomechanical datasets.

J. Crayton Pruitt Family Department of Biomedical Engineering