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* Associated with Datasets 1-4

Two Key Findings
1. Under relatively simple conditions, neural networks can classify maximum 

isometric force from lateral pinch data
Test losses were substantially lower and more stable for Dataset 1 and Dataset 2.

Test accuracies were substantially higher and more stable for Dataset 1 and Dataset 2.
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Methods

ANN

• Current musculoskeletal models of the thumb rely on the estimation of over 109 parameters 

defining joint motion, muscle and bone geometry, and muscle architecture.1

• Many parameters are difficult or impossible to measure in vivo, impeding development of subject-

specific models and interventions.

• Artificial neural networks (ANN) may be an effective tool for predicting difficult-to-measure 

parameters.

Maximum isometric force is 

the peak of the normalized 

muscle force-length curve (left)2. 

Lateral (key) pinch is a clinical 

outcome measure and activity of 

daily living (right) 3. 

Objectives
1. To explore the impact of muscle parameters on thumb-tip force production.

2. To identify the need to account for long-term temporal dependencies when 

mapping muscle parameters to the forces they produce.

Dataset Generation
• Model: Wrist and Thumb1

• Parameter altered: Maximum Isometric Force

• Muscles altered: flexor pollicis longus (FPL), 

abductor pollicis longus (APL), transverse and 

oblique heads of the adductor pollicis (ADPt 

and ADPo, respectively)

Target Force (35 N palmar, 

10 N ulnar)

& Target Posture
Vary max iso. force of muscles 

assoc. with Datasets 1-4.

Model Parameters

Muscle ActivationsMusculoskeletal Model

Forward Dynamic 

Simulation

Joint PostureThumb-tip Force

Dataset 1. 
FPL

Dataset 2. 
FPL, APL

Dataset 3.
FPL, APL, 

ADPt

Dataset 4. 
FPL, APL, 

ADPt, ADPo

Muscles altered for each dataset (left) and 

their anatomical location (right).6
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Inputs

• Thumb-Tip Force 

Component Vectors 

(𝐹𝑥 , 𝐹𝑦, 𝐹𝑧)

• Simulation time 

(𝑡)

Outputs

• Predicted Max Iso Force 

(𝐹𝑖𝑠𝑜
𝑚𝑎𝑥ℎ𝑖𝑔ℎ, 𝐹𝑖𝑠𝑜

𝑚𝑎𝑥 𝑙𝑜𝑤)

• 2, 4, 8, and 16 nodes for 

Datasets 1-4, 

respectively 

Hidden 

Nodes

Feed Forward

• Simple

• Lack feedback (i.e. lack “memory”)

LSTM

• Type of recurrent neural network

• Has long-term “memory”

Both architectures

• Learning Rate Tuning

• 5-Fold Cross Validation 

• Cross Entropy Loss

• Adam Optimizer

Machine Learning

2. Accounting for long-term temporal 

dependencies did not significantly 

improve ANN performance

Shaded regions represent 95% CI

• All models performed substantially 

better than random guess (represented 

by the dashed horizontal line)

• Two-sample t-tests showed significant 

differences between accuracies, but 

neither model consistently outperformed 

the other

Feedforward LSTM

Error bars represent 95% CI, * and ** denote 

significance p<0.05 and p<0.01, respectively 

Take-Aways:
1. ANNs may be used to predict difficult-to-measure muscle parameters but

performance with deeper and wider networks should be investigated. 

2. Accounting for temporal dependencies is unnecessary for classifying muscle 

parameters involved in lateral pinch.

• Evaluate performance with deeper and wider networks.

• Classify or regress additional muscle parameters, such as pennation angle. 

• Expand to more complex motor tasks and biomechanical datasets. 

LSTMs may be better suited for predicting muscle parameters for more dynamic 

tasks, such as gait.

Leveraging simulations and artificial neural networks, we may produce subject-specific 

musculoskeletal models more accurately. 

The present work has been detailed in a manuscript and accepted for publication in PLOS One. 
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