Leadership Distinguished Lecture Series: BioArtificial Materials and Mechanobiology Technologies for Regenerative Medicine

Date: 
02/23/2015 - 4:00pm
Speaker: 
Andres Garcia, Ph.D., Neely Chair and Regents’ Professor of Bioengineering, Georgia Institute of Technology
Location: 
Communicore, Room C1-7

Abstract:

Cell adhesion to extracellular matrices plays central roles in the formation, maintenance and repair of numerous tissues. Moreover, cell adhesion to adsorbed proteins or adhesive sequences engineered on surfaces is important to biomaterials, tissue engineering, and biotechnological applications. Cell adhesion to extracellular matrix proteins is primarily mediated by the integrin family of adhesion receptors. We have established biomolecular strategies for the engineering of bioartificial materials to direct integrin binding specificity and signaling as well as technologies to study and control mechanobiology responses. These materials regulate cell adhesion and signaling to direct in vitro cell function (adhesion, proliferation, and differentiation) and in vivo healing responses for tissue repair and integration. Notably, these surface engineering strategies focus on modifying clinically relevant materials and are translatable to existing biomedical devices. In one application, we have synthesized synthetic hydrogels presenting defined densities of adhesive ligands, vasculogenic growth factors, and protease degradable sequences that direct in vivo vascular growth and therapeutic vascularization. These approaches provide a basis for the rational design of robust bioinstructive materials that tailor adhesive interactions and elicit specific cellular responses for the development of 3D hybrid scaffolds for enhanced tissue reconstruction, "smart" biomaterials, and cell growth supports. 

Brief Bio:

Andrés J. García is the Rae S. and Frank H. Neely Endowed Chair and Regents' Professor in the Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology. He received a B.S. in Mechanical Engineering with Honors from Cornell University in 1991. He received M.S.E. (1992) and Ph.D. (1996) degrees in Bioengineering from the University of Pennsylvania. He completed a two-year post-doctoral fellowship in cell and molecular biology at the School of Medicine of the University of Pennsylvania. Dr. García’s research program centers on integrating innovative engineering, materials science, and cell biology concepts and technologies to generate (i) novel insights into the regulation of adhesive forces and mechanotransduction, and (ii) cell-instructive materials for tissue repair in regenerative medicine applications. His research has received funding from the NIH, NSF, Coulter Foundation, Arthritis Foundation and Juvenile Diabetes Research Foundation. He has received several distinctions, including the NSF CAREER Award, Arthritis Investigator Award, Georgia Tech’s CETL/BP Junior Faculty Teaching Excellence Award, Young Investigator Award from the Society for Biomaterials, Georgia Tech’s Outstanding Interdisciplinary Activities Award, and the Clemson Award for Basic Science from the Society for Biomaterials. He serves on the editorial board of leading biomaterial and regenerative medicine journals.  He has been recognized as a top Latino educator by the Society of Hispanic Professional Engineers. He has been elected a Fellow of Biomaterials Science and Engineering by the International Union of Societies of Biomaterials Science and Engineering, AIMBE, and AAAS.

 

Academic year: