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INTRODUCTION 
Muscle fatigue, the exercise-induced reduction 
in a muscle’s force-generating capacity [1], is an 
important factor in the design of myoelectric 
devices [2] and injury prediction [3]. Multiple 
works have attempted to capture biomechanical 
changes with muscle fatigue onset. Despite the 
relevance and existence of fatigue models, the 
effects of fatigue are typically ignored in models 
of human movement [4]. Ignoring the effects of 
muscle fatigue, especially for sustained or high 
intensity contractions, can result in considerable 
uncertainty in predicted outcomes.  
 
Our objective was to improve the prediction of 
torque in fatiguing upper extremity movements. 
We selected to predict torque as it is correlated 
to the decline in muscle force caused by fatigue. 
Furthermore, predicting changes in torque is 
valuable for the design of interventions to 
mitigate the impact of muscle fatigue. Towards 
this objective, we developed a model of elbow 
flexion via transfer learning, the process of 
training a machine learning model on one task 
(e.g. simulated data) and repurposing this 
knowledge for another task (e.g. measured 
data). Through this work, we expected to 
demonstrate machine learning models trained on 
simulations and recorded data can predict 
sustained elbow flexion torque more accurately 
than those trained on only recorded data.  
 
METHODS 
We developed long short-term memory (LSTM) 
neural networks to regress elbow flexion torque 
from four muscle activations. We trained and 
tested two LSTMs. The first was trained solely 
on recorded data. The second leveraged transfer 
learning in that it was pre-trained with simulated 
data and fine-tuned on recorded data (Fig. 1). 
 
For the simulation dataset, we generated 1,701 
elbow flexion simulations using an upper 
extremity model [5] and OpenSim v. 4.1. Each 
simulation included a unique combination of 
scaling (young adults [6]) and target torque (30 
to 90 Nm, coinciding with previously reported 
maximum voluntary torques [7,8]). We then 
processed these data through the muscle fatigue 
model described by Xia and Frey Law [9]. This 

model uses compartment theory and control 
theory to represent a muscle’s motor units in 
active, rested, and fatigued states. We 
parameterized this model using fatigue and 
recovery rates for the elbow defined in prior 
literature [10]. Simulation-derived muscle 
activations and time were LSTM inputs and 
dynamic elbow flexion torque was output. 
 

 
Fig 1: Framework used to obtain data and develop 
LSTMs (blue) informed via recorded data (gray) and 
transfer learning, denoted 𝐿𝑆𝑇𝑀𝑅 and 𝐿𝑆𝑇𝑀𝑇𝐿, 
respectively. Simulated data (orange) were generated 
via computed muscle control (CMC), a fatigue model, 
and forward dynamics.  

For the experimental dataset, we recorded data 
from 15 right-handed young adults (6 female, 9 
male, 22.3 ± 2.9 years, 1.7 ± 0.05 m, 75.8 ± 14.1 
kg) as part of an IRB-approved study (UF IRB 
#202202263). Muscle activity was recorded 
using surface electromyography (EMG) of the 
biceps, brachioradialis, and triceps as well as 
intramuscular EMG of the brachialis. All EMG 
data were collected at 3000 Hz. Simultaneously, 
dynamic elbow flexion torque was collected 
using a Biodex System Pro 4. Participants were 
positioned at 45º shoulder flexion, 90º elbow 
flexion, and 90º supination.  
 
During testing, each participant performed three 
5-second maximum voluntary contractions 
(MVCs) of isometric elbow flexion with 10 
seconds of rest between. Following the MVCs, 
each participant performed sustained elbow 
flexion with a target torque of 80% of their 
maximum torque. Similar to prior work [8], this 
fatiguing trial terminated when the participant’s 
torque fell below 70% of their MVC for 3 of 5 
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seconds. Across both the MVC and fatigue trials, 
participants received real-time visual feedback 
of their torque and verbal encouragement.  
 
We compared the prediction accuracies of the 
LSTM trained solely on recorded data with those 
of the model developed via transfer learning. 
Each LSTM was trained on the same twelve 
subjects’ data, with three subjects’ data used for 
testing. Specifically, we compared the root mean 
square error (RMSE) and mean absolute error 
(MAE) of each LSTMs’ predictions on the test 
subjects’ data.  
 
RESULTS AND DISCUSSION 
The LSTM trained on recorded data alone 
underperformed relative to its transfer learning 
counterpart. The LSTM trained only on recorded 
data predicted test subject torques with an 
RMSE and MAE of 18.3 Nm and 15.5 Nm, 
respectively. By comparison, the LSTM 
developed via transfer learning achieved an 
RMSE and MAE of 16.0 Nm and 13.2 Nm, 
respectively (Fig. 2). These results indicate that 
pre-training machine learning models on 
simulated, fatiguing elbow flexion torques 
improves predictions on real-world data.   
 

 
Fig 2: Parity plot (left) and raw torque prediction (right) 
from 𝐿𝑆𝑇𝑀𝑇𝐿 on one test subject’s data. Gray data on 
right represent recorded torque data, while blue 
represents 𝐿𝑆𝑇𝑀𝑇𝐿 predictions.  

 
Both models predicted changes in elbow flexion 
torque with fatigue onset (i.e., the shape of the 
curve) relatively well. However, predicting the 
magnitude of the torque was considerably more 
challenging. For example, the LSTM developed 
via transfer learning predicted one test subject’s 
elbow flexion torque with an MAE exceeding 23 
Nm. Yet, shifting the predicted torque of the 
entire fatigue trial by a constant offset yielded an 
MAE of 3.3 Nm (Fig. 3). This substantial 
decrease in MAE suggests the LSTMs would 
improve with the inclusion of features that 
indicate the magnitude of the torque, such as the 
initial torque for each trial and the subject’s 
maximum voluntary torque. Furthermore, 
features such as sex, physical function, 
metabolic parameters, and anthropometric data 
may further improve the LSTM’s predictions.  
 

 
Fig 3. Sample of raw (blue) and shifted (green) torque 
predictions from 𝐿𝑆𝑇𝑀𝑇𝐿 on the test subject associated 
with the poorest raw prediction accuracy. Recorded 
torque data is shown in gray. The depicted shift was 
calculated as the difference between means of the raw 
predicted and recorded torques.  

 
Pre-training the LSTM on simulated data 
improved torque predictions, exemplifying the 
potential of simulations for informing machine 
learning models. The computational efficiency of 
simulated biomechanical data, and the 
availability of open-source repositories means 
there are abundant, available simulations that 
can be used for predicting real-world 
biomechanics. Future works may apply our 
transfer learning strategy to model populations 
and tasks beyond elbow flexion in young adults. 
 
CONCLUSIONS 
Our results exemplify how our transfer learning 
framework can be used to expand the utility of 
simulated datasets and yield models robust to 
the onset of muscle fatigue. Alone, simulations 
can be encumbered by assumptions. Yet, 
accompanying these data with measurements 
can yield models generalizable to a wide variety 
of real-world biomechanical systems. 
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