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Introduction 
Machine learning approaches can infer complex biomechanical 
relations. Yet, many models are regarded as a “black box,” 
lacking interpretability and limiting user confidence. While 
various works have recently advanced the field of explainable 
artificial intelligence (XAI)1,2, very few have applied these 
methods to explain time-series biomechanical data. A notable 
example, Horst et. al3 employed layer-wise relevance 
propagation to classify gait patterns from measured kinetic and 
kinematic data. This work presented a robust, interpretable model 
to provide data-driven gait analysis. XAI may provide clinical 
and scientific insights for a variety of other tasks beyond gait. 
 Here, we expand the use of XAI to the upper extremity, which 
is a complex, high degree-of-freedom system. Our objective was 
to reveal what a deep long short-term memory model (LSTM) 
learns from forward dynamic lateral pinch simulations. We used 
Shapley Additive Explanations (SHAP) to explain our LSTM’s 
predictions. Known for consistent interpretations, SHAP 
considers all possible predictions for an observation using all 
possible combinations of features4. Importantly, we interpret 
SHAP values for our LSTM in the context of prior literature, 
providing both confidence in and insight from our model.  
 
Methods 
We developed an LSTM, which is a type of neural network, to 
predict lateral pinch thumb-tip forces from muscle activations. 
The LSTM included 14 inputs representing simulated muscle 
activations for 5 wrist and 9 thumb muscles. There were 3 hidden 
layers with 16 nodes each and 3 output nodes corresponding to 
3-component thumb-tip forces. The LSTM used an RMSE loss 
criteria and an Adam optimizer. The LSTM underwent parameter 
tuning via random search, and 5-fold cross validation was used.   

To provide observations to train our LSTM, we simulated 
lateral pinch data with varied anthropometric scaling and target 
forces. Using OpenSim v. 4.1, we scaled a thumb model5 to 
random masses and bone lengths representing 5th-95th percentile 
young adults6. Each scaled thumb model was used in computed 
muscle control (CMC) simulations7. Target thumb-tip forces 
ranging from 40 N to 80 N in 5 N increments were CMC inputs. 
We applied these forces palmarly at the thumb-tip, as well as with 
25% distal, 25% ulnar, and 25% radial deviations. Altogether, 
each scaled thumb model (525 total) was run through CMC 36 
times (9 forces x 4 directions). Forward dynamics was then used 
to estimate thumb-tip forces resulting from the muscle activations 
from CMC. Muscle activations from CMC acted as LSTM inputs 
and thumb-tip forces from forward dynamics acted as outputs.  
 Data preprocessing included (1) removing simulations that 
failed to complete, (2) linearly interpolating all simulations to the 
same number of time points, (3) truncating the simulations to 
remove noise end effects, and (4) removing unphysical and 
unstable simulations. We then shuffled and split the resulting 
6,590 simulations into training and testing datasets (80/20 split).  
 We analyzed the performance and predictions of the LSTM. 
Here, we report the RMSE of our LSTM evaluated on test data to 
elucidate the LSTM’s ability to predict forces from muscle 
activations. To explain the predictions of the LSTM, we 

calculated SHAP values for 1000 random test observations. 
Briefly, SHAP values are calculated by first permuting all model 
features and training a distinct model (i.e. the LSTM) for each 
combination. The SHAP value for a feature is the average of the 
marginal contributions across all permutations of model features. 
 
Results and Discussion 
The LSTM predicted forces from muscle activations with low 
error. RMSEs for the LSTM were 1.64 N, 0.932 N, and 0.692 N 
for the distal, dorsal, and ulnar force directions, respectively. For 
each observation, the absolute error in the LSTM’s prediction 
generally followed a normal distribution centered about 0 N.  

The SHAP values of the five features most important for the 
LSTM’s predictions are displayed in Fig. 1. Consistent with 
observations from cadaver specimens8, the LSTM predicted a 
large negative dorsal force when activation of the flexor pollicis 
longus (FPL) was high and the extensor pollicis brevis (EPB) was 
low (Fig. 1, when FPL & EPB are red, SHAP value for Fy is 
large). Fascinatingly, the LSTM’s prediction of thumb-tip force 
was substantially impacted by the activation of wrist muscles 
(Fig 1, extensor carpi ulnaris, ECU, and flexor carpi ulnaris, 
FCU). This result is consistent with prior literature, as wrist 
posture is known to affect lateral pinch strength9. 

In summary, we present two key findings: (1) the LSTM was 
able to learn the mapping between simulated muscle activations 
and simulated thumb-tip forces with low error and (2) 
interpreting the LSTM via SHAP revealed impacts of muscle 
activations on thumb-tip forces consistent with prior literature. 

 
Fig. 1: SHAP values from 1000 test observations for the most important 
features predicting thumb-tip force in distal, dorsal, and ulnar directions 
(𝐹 , 𝐹 , and 𝐹 , respectively). Colors represent muscle activations.  
 
Significance 
The present work exemplifies not only the robustness of deep 
models for predicting upper extremity biomechanics, but that 
these models no longer need be considered a totally “black box.” 
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